Time: $\mathbf{3}$ hours; Total Marks: 90

General Instructions:

1. All questions are compulsory
2. The question paper consists of 31 questions divided into four sections - A, B, C and D
3. Section A contains 4 questions of 1 mark each
4. Section B contains 6 questions of 2 marks each
5. Section C contains 10 questions of 3 marks each
6. Section D contains 11 questions of 4 marks each

SECTION - A

1. The probability of selecting a rotten apple randomly from a heap of 900 apples is 0.18 . What is the number of rotten apples in the heap?
2. If a tower 30 m high, casts a shadow $10 \sqrt{3} \mathrm{~m}$ long on the ground, then what is the angle of elevation of the sun?
3. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60°, then find the length of OP.
4. What is the common difference of an A.P. in which $\mathrm{a}_{21}-\mathrm{a}_{7}=84$?

SECTION - B

5. A circle touches all the four sides of a quadrilateral $A B C D$. Prove that $A B+C D=B C+D A$
6. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.
7. A line intersects the y-axis and x-axis at the points P and Q respectively. If $(2,-5)$ is the mid-point of $P Q$, then find the coordinates of P and Q.
8. If the distances of $P(x, y)$ from $A(5,1)$ and $B(-1,5)$ are equal, then prove that $3 x=2 y$.
9. Find the value of p, for which one root of the quadratic equation $p x 2-14 x+8=0$ is 6 times the other.
10. For what value of n, are the nth terms of two A.Ps $63,65,67, \ldots$ and $3,10,17, \ldots$. . equal?

SECTION - C

11. On a straight line passing through the foot of a tower, two points C and D are at distances of 4 m and 16 m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower.
12. A bag contains 15 white and some black balls. If the probability of drawing a black ball from the bag is thrice that of drawing a white ball, find the number of black balls in the bag.
13. Three semicircles each of diameter 3 cm , a circle of diameter 4.5 cm and a semicircle of radius 4.5 cm are drawn in the given figure. Find the area of the shaded region.

14. In what ratio does the point $\left(\frac{24}{11}, y\right)$ divides the line segment joining the points $P(2,-2)$ and $Q(3,7)$? Also find the value of y.
15. Water in a canal, 5.4 m wide and 1.8 m deep, is flowing with a speed of $25 \mathrm{~km} / \mathrm{hour}$. How much area can it irrigate in 40 minutes, if 10 cm of standing water is required for irrigation?
16. In the given figure, two concentric circles with centre O have radii 21 cm and 42 cm . If $\angle A O B=60^{\circ}$, find the area of the shaded region. $\left(\right.$ Use $\left.\pi=\frac{22}{7}\right)$

17. The dimensions of a solid iron cuboid are $4.4 \mathrm{~m} \times 2.6 \mathrm{~m} \times 1.0 \mathrm{~m}$. It is melted and recast into a hollow cylindrical pipe of 30 cm inner radius and thickness 5 cm . Find the length of the pipe.
18. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius on its circular face. The total height of the toy is 15.5 cm . Find the total surface area of the toy.
19. How many terms of an A.P. $9,17,25, \ldots$ must be taken to give a sum of 636 ?
20. If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+\left(c^{2}+d^{2}\right)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.

SECTION - D

21. If the points $A(k+1,2 k), B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are collinear, then find the value of k.
22. Construct a triangle $A B C$ with side $B C=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ}$. Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the $\triangle A B C$.
23. Two different dice are thrown together. Find the probability that the numbers obtained have (i) even sum, and
(ii) even product
24. In the given figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangents $A B$ with point of contact C, is intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

25. In a rain-water harvesting system, the rain-water from a roof of $22 \mathrm{~m} \times 20 \mathrm{~m}$ drains into a cylindrical tank having diameter of base 2 m and height 3.5 m . If the tank is full, find the rainfall in cm . Write your views on water conservation.
26. Prove that the lengths of two tangents drawn from an external point to a circle are equal.
27. If the ratio of the sum of the first n terms of two A.Ps is $(7 n+1):(4 n+27)$, then find the ratio of their $9^{\text {th }}$ terms.
28. Solve for $\mathrm{x}: \frac{x-1}{2 x+1}+\frac{2 x+1}{x-1}=2$, where $\mathrm{x} \neq-\frac{1}{2}, 1$
29. A takes 6 days less than B to do a work. If both A and B working together can do it in 4 days, how many days will B take to finish it?
30. From the top of a tower, 100 m high, a man observe two cars on the opposite sides of the tower and in same straight line with its base, with its base, with angles of depression 30° and 45°. Find the distance between the cars. [Take $\sqrt{3}=1.732$]
31. In the given figure, O is centre of the circle with $A C=24 \mathrm{~cm}, A B=7 \mathrm{~cm}$ and $\angle B O D=90^{\circ}$. Find the area of the shaded region.

